الإحصاء النفسي الأستدلالي

PSY 222

المحاضرة السابعة

الطريقة الثانية: سنطبقها على المثال السابق

(ح ف) ۲	ح ف	ف	القياس البعدي	القياس القبلي	
70	٥	٦	٣	٩	
١٦	٤-	٣-	٧	٤	
٩	٣-	۲-	٨	٦	
`	١	۲	٧	٩	
)	١	۲	٦	٨	
07	صفر	٥	مج		

$$0 = \frac{0}{0} = 1$$
م ف

$$\frac{\gamma}{\sqrt{\frac{\gamma(-j)}{(j-1)}}} = \frac{\gamma}{\sqrt{\frac{\gamma(-j)}{(j-1)}}}$$

$$\frac{1}{\sqrt{\frac{\circ Y}{(1-\circ)}\circ}} =$$

$$\frac{1}{\sqrt{\frac{o\,\gamma}{\gamma\,\cdot}}} =$$

$$\frac{1}{1,717} =$$

وهي نفس النتيجة السابقة في مثال ٣ باستخدام الطريقة الأولى

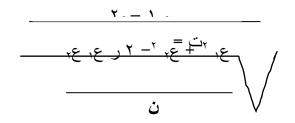
(ح ف) ً	ح ف	ف	ج۲	٦٥
٤	۲	٤	١.	١٤
صفر	صفر	۲	٨	١.
١	1-	١	١٢	١٣
٤	۲	٤	10	19
٩	٣-	١-	١٧	١٦
70	0	٧	11	١٨
١	1-	١	٧	٨
١	١	٣	٨	11
٩	٣-	1-	11	١.
٤	۲-	صفر	١١	11
٥٨	صفر	Y = \frac{\frac{1}{\cdot \cdot }}{\cdot \cdot }	مج	

$$\frac{\gamma}{\sqrt{\frac{\gamma(-j)}{(\gamma-j)}}} = \frac{\gamma}{\sqrt{\frac{\gamma(-j)}{(\gamma-1)}}} = \frac{\gamma}{\sqrt{\frac{\gamma(-j)}{\gamma(-1)}}} = \frac{\gamma}{\sqrt{\frac{\gamma(-j)}{\gamma(-$$

الطريقة الثالثة:

٧	١.
11	١٢
٧	11
٨	٩
١.	١٣
٨	١.
٧	١.
٨	17
٨	١٣
Υ	١.
$\frac{\lambda}{\lambda} = \frac{1}{\lambda}$	$11 = \frac{11}{1} = 2$
1,100 = 2	ع = ٤١٤,١
ع۲= ۱٫۳۳۳	ع ^۲ = ۲

ر= ۱۲۲٫۰


$$\frac{\lambda - 11}{\sqrt{\frac{(1,100 \times 1,515 \times .717 \times 7(-1,777 + 7)}{1.}}} = \frac{\lambda - 11}{\lambda + 1}$$

$$\frac{\tau}{\sqrt{\frac{1,999-7,777}{1.}}} =$$

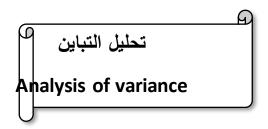
$$\Lambda, \Upsilon \Upsilon \Upsilon = \frac{\Upsilon}{\cdot, \Upsilon \Upsilon \circ \Upsilon} =$$

١٢	٩
١٤	١٢
١٣	٩
11	١.
10	١٢
١٢	١.
17	٩
١٤	١.
10	١.
١٢	٩
م = ۱۳۰ = م	م= ۱۰۰ = م
ع = ۱,٤١٤	ع = ٥٥١,١
z ⁷ = 7	ع ٔ = ۱٫۳۳۳

ر = ۲۱۲,۰

$$\frac{r}{\sqrt{\frac{1,999-r,rrr}{1.}}} = \sqrt{\frac{1,999-r,rrr}{1.}}$$

$$A,Y17 = \frac{r}{.,r70Y} = \sqrt{\frac{r}{.,r70Y}}$$
حجم التأثير (مربع إيتاً)


وبعد الانتهاء من حساب قيمة (ت) يتحقق الباحث من حجم التأثير عن طريق حساب مربع إيتا بالمعادلة الآتية:

ثم يحسب δ بالمعادلة الآتية

$$\frac{\sqrt{||x||} \gamma}{\sqrt{||x||}} = \delta$$

$$\sqrt{||x||} \sqrt{||x||}$$

ولمعرفة حجم التأثير يتبع الباحث المعايير الآتية:

عندما يتعلق الأمر بمقارنة متوسطات أكثر من مجموعتين فلا يمكن تكرار المقارنات باستخدام t-test حيث يقع الباحث هنا في الخطأ من النوع الأول والذي يترتب عليه رفض الفرض الصفري عندما يكون صحيحًا.

لذا يلجأ الباحث هنا إلى استخدام تحليل التباين بأنواعه:

١ -تحليل التباين الأحادي One way Anova:

ويتم باستخدامه التعرف على الفروق بين تأثير متغير مستقل واحد (ذو عدة مستويات) على متغير تابع.

٢ -تحليل التباين الثنائي ways Anova:

ويتم باستخدام هذا النوع التعرف على تأثير متغيرين مستقلين (بمستوياتهما المتعددة) على متغير تابع.

٣ -تحليل التباين الثلاثي (المتعدد) Multiple Anova:

وفيه تتم دراسة تأثير عدة متغيرات مستقلة (بمستوياتها المتعددة على متغير تابع).

٤ -تحليل التباين العاملي Factorial Anova:

وجدير بالذكر أنه عدا النوع الأول يكشف التحليل عن تأثير المتغيرات المستقلة بمستوياتها على المتغير التابع. بالإضافة إلى تأثير التفاعل بين تأثير تلك المتغيرات.

وتجدر الإشارة إلى أن تحليل التباين أسلوب إحصائي يستخدم لمقارنة متوسطي مجموعتين أو أكثر، فإذا استخدم لمقارنة متوسطين فإن نتائجه تماثل نتائج اختبارات t-test للمجموعات المستقلة. وفي هذه الحالة فقط تكون ف الناتجة من تحليل التباين مساوي لقيمة ت للمجموعات المستقلة.

وبعد تحليل التباين على عدة افتراضات هي:

- ١. العشوائية في اختيار المجموعات.
- ٢. الاستقلالية في اختيار المجموعات.
 - ٣. التوزيع الاعتدالي للمتغير التابع.

$(3. ext{ relium in properties})^{1/2} = 3$ کا تجانس تباین المجموعات (ع

أولا: تحليل التباين الأحادي One way Anova:

سم مثال ١:

⁺ G 4	G4	¹ G 3	G3	¹G2	G2	'G1	G1
١٦	٤	70	0	٣٦	٦	٦٤	٨
70	0	١٦	٤	٤٩	٧	۸١	٩
٩	٣	٣٦	٦	٦ ٤	٨	٤٩	٧
١٦	٤	70	0	70	0	٣٦	٦
٣٦	7	١٦	٤	٦٤	٨	١	١.
				70	0	70	٥
1.7	77	١١٨	۲ ٤	774	٣٩	٣٥٥	٤٥

$$\Lambda \pi \Lambda = 1.7 + 11 \Lambda + 77 \pi + \pi 00 = 100 \pi$$
 مجموع مربعات درجات المجموعات

٤ - مجموع المربعات بين المجموعات =

$$\frac{(7)}{5} \frac{(7)}{5} \frac{(7$$

١٨ =

ف	متوسط المربعات	درجات الحرية	مجموع المربعات	مصدر التباين
2 9 7 9	11,7.7	٣	٣٤,٨٢	بين المجموعات
0,979	1,9 £ £	١٨	٣٥	داخل المجموعات
		71	٦٩,٨٢	الكلي

سر <u>مثال ۲:</u>

¹G3	G3	⁵G2	G2	'G1	G1
۸١	٩	٦٤	٨	٩	٣
1 £ £	١٢	٤٩	٧	70	٥
171	١١	۸١	٩	٣٦	٦
٦٤	٨	٣٦	٦	٤	۲
١	١.	70	٥	١٦	٤
01.	0.	700	٣٥	٩.	۲.

۱-مجموع درجات المجموعات = ۲۰ + ۳۵ + ۵۰ = ۱۰۰

ę	متوسط المربعات	درجات الحرية	مجموع المربعات	مصدر التباين
	٤٥	۲	٩.	بين المجموعات
1 /	۲,٥	١٢	٣٠	داخل المجموعات
			, ,	9.4.91

۲ - ۱٤ =

۱۲ =

⁺ G 4	G4	¹ G3	G3	⁵G2	G2	'G1	G1
079	74	٣٦١	19	٩	٣	1	١.
197	١٤	1 £ £	١٢	٦٤	٨	٤٩	٧
707	١٦	707	١٦	٤٩	٧	۸١	٩
٣٢٤	١٨	197	١٤	70	٥	٦٤	٨
1 { {	١٢	٤٩	٧	٣٦	٦	770	10
179	١٣	٦٤	٨	١	١.	٩	٣
707	١٦	179	١٣	1 { {	١٢	٦٤	٨
719	١٧	1	١.	١٦	٤	۸١	٩
٣٦١	19	٣٦١	19	٤٩	٧	171	11
197	١٤	۸١	٩	٣٦	٦	۸١	٩
707	١٦	770	10	70	٥	70	٥
719	١٧	197	١٤	770	10	۲۸۹	١٧
7770	190	77.7	107	٧٧٨	٨٨	1114	111

۱-مجموع درجات المجموعات = ۱۱ + ۸۸ + ۱۵۱ + ۱۹۵ = ۵۵۰

٢-مجموع مربعات درجات المجموعات = ١١٨٩ + ٢٢٠٢ + ٢٢٦٥ = ٧٤٣٤

٤ - مجموع المربعات بين المجموعات =

$$\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac{1}}{\frac$$

$$\circ$$
IV = I. Υ Y — IAI9 =

$$0$$
-مجموع مربعات الخطأ = مجموع المربعات الكلي - مجموع المربعات بين المجموعات = 0 - 0

ف	متوسط المربعات	درجات الحرية	مجموع المربعات	مصدر التباين
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	١٨٩	٣	٥٦٧	بين المجموعات
18,71	17,12	٤٤	070	داخل المجموعات
				الكلي